Journal of Organometallic Chemistry, 111 (1976) 31-42
(C) Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

SOME DIELS-ALDER REACTIONS OF η^{1}-BONDED CYCLOPENTADIENYLMETAL COMPOUNDS

A.R. LÁSZLÓ BURSICS *, MARTIN MURRAY and F. GORDON A. STONE *
Department of Inorganic Chemistry, The University, Bristol BS8 1TS, (Great Britain)

(Received November 19th, 1975)

Summary

Bis(cyclopentadienyl)mercury readily undergoes Diels-Alder reactions with $\mathrm{RC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right.$ or $\left.\mathrm{CF}_{3}\right), \mathrm{CF}_{3} \mathrm{CF}=\mathrm{CFCF}_{3}, \mathrm{CF}_{3} \mathrm{CF}=\mathrm{CF}_{2},\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}$, $\mathrm{C}_{2}(\mathrm{CN})_{4}$ and $\mathrm{Ph} N-\mathrm{CO}-\mathrm{N}=\mathrm{N}-\mathrm{CO}$ to give stable adducts characterised by ${ }^{1} \mathrm{H}$, ${ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Similar reactions of $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}$ and $\mathrm{CF}_{3} \mathrm{CF}=\mathrm{CFCF}_{3}$ with the cyclopentadiene derivatives $\mathrm{Me}_{3} \mathrm{MC}_{5} \mathrm{H}_{5}$ and $\left(\mathrm{Me}_{3} \mathrm{M}_{2} \mathbf{C}_{5} \mathrm{H}_{4}(\mathrm{M}=\mathrm{Si}, \mathrm{Sn})\right.$ are also described.

In this paper we describe reactions of bis(cyclopentadienyl)mercury, 5 -trimethylsilylcyclopentadiene, 5 -trimethylstannylcyclopentadiene, 5,5 -bis(trimethylsilyl)cyclopentadiene and 5,5-bis(trimethylstannyl)-cyclopentadiene with hexafluoro-but-2-yne and some fluoro-olefins. Reactions of bis(cyclopentadienyl)mercury with some other dienophiles are also reported.

Following the discovery of $\mathrm{Hg}_{\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \text {, Wilkinson and Piper [1] observed that }}$ the compound formed an adduct with maleic anhydride. Recently others [2] have reported a reaction between the mercury compound and p-benzoquinone. Although Diels-Alder reactions of bis(cyclopentadienyl)mercury have not been studied extensively, numerous papers have described such reactions of the cyclopentadiene derivatives $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{MMe}_{3}(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn})$ [3-11].

The reactions of bis(cyclopentadienyl)mercury studied by us are outlined in Scheme 1. The fluoro-organic compounds employed are known [12] to be highly reactive dienophiles in 1,4-addition reactions, as are tetracyanoethylene and 4-phenyl-1,2,4-triazoline-3,5-dione. Reactions occurred readily to afford in high yield bicyclo [2.2.1.]hepta-2,5-diene (I, II), bicyclo[2.2.1]]ept-5-ene (III-VI), and 5,8-dihydro-5,8-methano-1H-[1.2.4]triazolo[1.2a]pyridazine-2-phenyl-1,3dione (VII) derivatives of mercury.

In other studies involving the cyclopentadiene-silyl and -stannyl derivatives $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{MMe}_{3}$ and $\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{MMe}_{3}\right)_{2}(\mathrm{M}=\mathrm{Si}, \mathrm{Sn})$, reactions readily occurred with hexa-

[^0]
SCHEME I

(I) $\quad R_{1}=R_{2}=\mathrm{COOCH}_{3}$
(II) $R_{1}=R_{2}=C F_{3}$
(III) $R_{3}=R_{5}=F ; R_{4}=R_{6}=C F_{3}$
(IV) $R_{3}=R_{5}=R_{6}=F ; R_{4}=C F_{3}$
(V) $R_{3}=R_{4}=C F_{3} ; R_{5}=R_{6}=C N$
(II) $R_{3}=R_{4}=R_{5}=R_{6}=C N$

SCHEME II

(XII) $\mathrm{M}=\mathrm{Si}$

(IVa)

(XIX)

(IV b)

(X7)

(IIIa)

(III b)

(IIIC)

(XZI)

(XVII)
fluoro-but-2-yne and with octafluoro-but-2-ene to give the products shown in Scheme 2.

The new compounds were characterised by elemental analysis and mass spectra, and by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Tables 1 and 2). The ${ }^{1} \mathrm{H}$ spectra are in accord with the compounds being bicyclo[2.2.1] hepta-2,5-diene and bicyclo[2.2.1]-hept-5-ene derivatives substituted in the 7-position [4]. Additional structural information was obtained from their ${ }^{19} \mathrm{~F}$ (see Experimental) and ${ }^{13} \mathrm{C}$ (Table 3) NMR spectra, and is discussed below.

The ${ }^{19} \mathrm{~F}$ NMR spectrum of IV showed two sets of signals corresponding to two possible configurations (IVa and IVb) of the bicyclo[2.2.1]hept-5-ene ring system, although three isomers of IV are possible as the molecules contain two bicyclo[2.2.1] hept-5-ene systems. The CF_{3} group with the lower field chemical shift was assigned the exo-structure (IVa), since one of the associated fluorine signals (F_{b} in this case) showed no coupling other than to F_{a}, and $J(F$ endo-. F endo) is known [13] to be zero in XIV whereas J(F exo-Fexo) is 12.5 Hz in
TÄBLE 1
ANALYTICAL AND I H NMR SPECTROSCOPIC DATA FOR ADDUCIS OF BIS(CYCLOPENTADIENYL)MERCURY

[^1] used the following numbers:
e Mixture of lsomers (see text). f No molecular peak observed.
TABLE 2
ANALYTICAL AND ${ }^{1}$ H NMR SPECTROSCOPIC DATA FOR ADDUCTS OF SILYL- AND STANNYL-COMPOUNDS

Dienophiles	Diencs	Products	$\begin{aligned} & \text { B.p. }{ }^{\circ} \mathrm{C} / \\ & \mathrm{mm} \mathrm{Hg} \end{aligned}$	Analysis ${ }^{\text {a }}$			Mol. wt. ${ }^{\text {a,b }}$	${ }^{1} \mathrm{H}$ NMR (T, ppm) ${ }^{\text {c }}$			
				C	H	F		1.4	5,6	7	Others
$\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}$	$\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{5}$	VIII	30/0.5	$\begin{gathered} 48.1 \\ (48.0) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.7) \end{gathered}$	$\begin{gathered} 37.9 \\ (37.9) \end{gathered}$	$\begin{aligned} & 300 \\ & (300.32) \end{aligned}$	6.15	3.04 (tr, 2)	7.75 (tr, 1)	10.14
$\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}$	$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{C} \mathrm{C}_{5} \mathrm{H}_{4}$	IX	67/1.1	$\begin{gathered} 48.7 \\ (48.4) \end{gathered}$	$\begin{gathered} 6.1 \\ (6.0) \end{gathered}$	$\begin{gathered} 30.4 \\ (30.6) \end{gathered}$	$\begin{aligned} & 372 \\ & (372.61) \end{aligned}$	5.88, 5.98	2.82 (d, 3)	7.67	9.88, 10.08
$\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}$	$\mathrm{Me}_{3} \mathrm{SnC}_{5} \mathrm{H}_{5}$	X	46-48/0.4	$\begin{gathered} 37.0 \\ (36.9) \end{gathered}$	$\begin{gathered} 3.6 \\ (3.6) \end{gathered}$	$\begin{array}{r} 29.4 \\ (29.2) \end{array}$	$\begin{aligned} & 392 \\ & (390.93) \end{aligned}$	6.00	3.02 (tr,3)	7.61 (tr,1)	9.99
$\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}$	$(\mathrm{Me} 3 \mathrm{Sn})_{2} \mathrm{C}_{5} \mathrm{H}_{4}$	XI	84-86/0.5	$\begin{gathered} 32.7 \\ (32.6) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.0) \end{gathered}$	$\begin{gathered} 21.0 \\ (20.6) \end{gathered}$	$\begin{aligned} & 554 \\ & (553.73) \end{aligned}$	5.91, 6.08	3.00 (d, 3)	7.64 (tr,1)	$\begin{aligned} & 9.90 \text { (sat., } 56 \text {) } \\ & 10.00 \text { (sat., } 54 \text {) } \end{aligned}$
$\mathrm{CF}_{3} \mathrm{CF}=\mathrm{CFCF}_{3}$	$\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{5}$	$\mathrm{XII}^{\text {d }}$	42-45/0.7	$\begin{gathered} 42.9 \\ (42.6) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.2) \end{gathered}$	$\begin{gathered} 44.5 \\ (44.8) \end{gathered}$	$\begin{aligned} & 337 \\ & (338.32) \end{aligned}$	6.71, 6.82	3.73	7.96 (d,6)	9.96
$\mathrm{CF}_{3} \mathrm{CF}=\mathrm{CFCF}_{3}$	$(\mathrm{Me} 3 \mathrm{Si})_{2} \mathrm{C}_{5} \mathrm{H}_{4}$	XIII ${ }^{\text {d }}$	55-56/0.2	$\begin{gathered} 44.0 \\ (43.9) \end{gathered}$	$\begin{gathered} 5.6 \\ (5.4) \end{gathered}$	$\begin{gathered} 37.3 \\ (37.0) \end{gathered}$	$\begin{gathered} 410 \\ (410.51) \end{gathered}$	6.68, 6.80	3.47	8.00 (d,6)	9.89, 10,00

[^2]TABLE 3
13 C NMR CHEMICAL SHIFTS AND COUPLING CONSTANTS (IN PARENTHESES) FOR BICYCLOI 2.2.1]HEPTENE AND BICYCLO[2,2.1]HEPTADIENE DERIVATIVES

Compound	$C(1)^{a}$	$\mathrm{C}(4){ }^{a}$	C(2)	C(3)	$C(5){ }^{6}$	$C(6){ }^{b}$	C(7)	CF_{3}	Other carbons
I	59.1	59.1	156.6	156.6	145.9	145.9	109.5		$51.9\left(\mathrm{OCH}_{3}\right), 166.1(\mathrm{CO})$
I1	58.1	58,1	c	c	146.0	146.0	109,8	c	-9(0073) 106.1(0)
XVI	63.2	53.2	148,7	148.7	142.8	142.8	73.9	122.8(270 ${ }^{\text {d }}$)	
VIII	55.3	55.3	c	c	142.6	142.6	82.7	122.3(270 d)	$-0.8\left(\mathrm{SiCH}_{3}\right)$
IX	58.8	66.5	151.7°	150.3	165.0	152.7	83.0	$122.3\left(270{ }^{\text {d }}\right.$)	$-0.9\left(\mathrm{SiCH}_{3}\right),-1.6\left(\mathrm{SiCH}_{3}\right)$
XI	62.0(39 ${ }^{\text {e }}$)	58.6(46 ${ }^{\text {e }}, 89^{e}$)	c	c	157.1	164.3(37 ${ }^{\text {c }}$)	82.1(385 $\left./ 370^{\prime \prime}\right)$	122.3(260 ${ }^{\text {d }}$)	$\begin{aligned} & -9.2\left(\mathrm{SnCH}_{3}\right),-9.6\left(361 f_{1},\right. \\ & \left.347^{R}\right)\left(\mathrm{SnCH}_{3}\right) \end{aligned}$
XVIIa	49.0(22 ${ }^{\prime}$)	$47.2\left(21{ }^{\prime \prime}\right)$	c	c	135.5(6 ${ }^{h}$)	134.9(6 ${ }^{\prime \prime}$)	45.3	$\begin{aligned} & 122.8\left(283^{d}, 32^{h}\right) \\ & 122.3\left(281 d^{d}, 29 h^{h}\right) \end{aligned}$	$3478)\left(\mathrm{SnCH}_{3}\right)$:
XIIa	$51.1\left(22^{h}\right)$	48,2(19 ${ }^{h}$)	c	c	134.9	$\left.134.16^{\frac{h}{4}}\right)$	45.6	122.3(281 , 29)	
XIIIa	52,2(20 ${ }^{\text {h }}$)	51.7(20 ${ }^{\text {h }}$)	c	c	149.8	143.6(6 ${ }^{\text {h }}$)	45,9	c	$-0.4\left(\mathrm{SiCH}_{3}\right)$
									$-1,6\left(\mathrm{SiCH}_{3}\right)$

[^3]XV. Consistent assignments of all peaks in the ${ }^{19} \mathrm{~F}$ spectra were then possible on the basis that fluorine atoms in exo-positions had higher shifts than those in endo-positions.

In the case of compounds III, XII and XIII their ${ }^{19} \mathrm{~F}$ spectra revealed the presence of three isomers, the major component (-85%) of each isomeric mixture having a trans arrangement of CF_{3} groups as in IIIa.

As expected this configuration gives rise to two signals for the exo- and endoCF_{3} groups and two signals for the exo-and endo-F atoms, which are assigned on the basis of the correlation established for IV. The remaining signals are attributed to the two possible cis-configurations for the substituents in the bicyclo[2.2.1] hept-5-ene rings, viz. IIIb and IIIc for the mercury compound. The more intense of these two sets of signals ($\sim 10 \%$ of the product for III) was assigned, on the basis of a relatively lower field CF_{3} signal and higher field F signal, a configuration in which the two CF_{3} groups are both in exo-configurations at the 2- and 3-positions of the bicyclic system (viz. IIIb for the mercury compound). The presence of all three configurations is consistent with a cis-addition mechanism for the Diels-Alder process, as the perfluorobut-2-ene used was shown by ${ }^{19} \mathrm{~F}$ NMR studies to be a mixture of trans- (70\%) and cis- (30\%) isomers. Separation of the isomers was not possible in any of these cases.

The ${ }^{13} \mathrm{C}$ NMR spectra for several of the compounds were recorded and results are summarised in Table 3, together with those for the two compounds XVI and XVII unsubstituted at the 7-position [14], included for comparison purposes.

Assignment of all peaks was generally straightforward, except for the ambiguities mentioned in the footnotes to Table 3. Most of the trends observed are comparable with those observed for other bicyclo[2.2.1] hepta-2,5-diene and bicyclo[2.2.1] hept-5-ene derivatives [15]. Thus the $C(7)$ resonance in the bicyclo[2.2.1]-hepta-2,5-diene derivatives is at much lower field than in the bicyclo [2.2.1] hept5 -ene derivatives, but there is an additional low field shift of this resonance observed for the mercury compounds. While a downfield shift is also observed on substitution of silicon and tin in the 7-position (VIII, IX, XI and XVI), the magnitude of the shift is much greater on substitution by mercury. Similar downfield shifts are observed for straight-chain alkylmercury derivatives [16]. The other shifts observed on substitution at the 7 -position are less remarkable, and are generally paralleled by the proton shifts.

As might be expected, the infrared spectrum of compound I shows strong carbonyl bands (at 1727 and $1710 \mathrm{~cm}^{-1}$). A corresponding band in the spectrum of VII was measured at $1725 \mathrm{~cm}^{-1}$. In the spectra of compounds II-V, and VIIIXIII very strong bands were observed between 1000 and $1350 \mathrm{~cm}^{-1}$ typical of the presence of carbon-fluorine bonds. In V and VI bands at 2210, 2110 and $2210,2130 \mathrm{~cm}^{-1}$, respectively, are assigned to the cyano-group vibrations. In X strong bands at 550 and $530 \mathrm{~cm}^{-1}$ are assigned to $\nu(\mathrm{SnC})$, the corresponding absorptions in the spectrum of XI being observed at 545 and $528 \mathrm{~cm}^{-1}$. Infrared data for the various compounds is given in the Experimental section.

The mercury compounds (Table 1) are all solids which tend to decompose only after several months storage at ambient temperature in day light. The silicon and tin compounds are colourless liquids, miscible with most organic solvents.

Formation of the 5,7-bis(trimethylsilyl)-and 5,7-bis(trimethylstannyl) derivatives (IX, XI and XIII) from compounds $\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{MMe}_{3}\right)_{2}(\mathrm{M}=\mathrm{Si}, \mathrm{Sn})$ prepared as

5,5-isomers clearly involves a metallotropic migration. These rearrangements occur at elevated temperatures in the cyclopentadiene derivatives and have been well studied [6-11,17]. In the present study we are unable to say at which stage migration of $\mathrm{Me}_{3} \mathrm{Si}$ or $\mathrm{Me}_{3} \mathrm{Sn}$ groups occur.

We are uncertain of the stereochemistry at the 7-position in the products. Our NMR studies reveal that only one configuration is present, and we have chosen to assume that the substituent (Hg or MMe_{3}) is in an anti-configuration with respect to the added dienophile.

In contrast to the results with $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}, \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$, and the other dienophiles shown in Table 1, bis(cyclopentadienyl)mercury did not undergo Diels-Alder additions with $\mathrm{PhC} \equiv \mathrm{CH}$ or $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CH}$. Instead the following reactions occurred to give the known compounds XVIII and XIX [18-20] in low yield ($<5 \%$):

Experimental

Infrared spectra were recorded using a Perkin-Elmer 457 instrument, and NMR spectra with Varian HA100 and JEOL PFT100 spectrometers. NMR spectra were measured in CDCl_{3}, and δ for ${ }^{13} \mathrm{C}$ shifts is measured relative to $\mathrm{Me}_{4} \mathrm{Si}$. ${ }^{19} \mathrm{~F}$ chemical shifts are relative to $\mathrm{CCl}_{3} \mathrm{~F}$ (0.00 ppm), positive values indicating a shift to high field. Mass spectra, for molecular weight determinations, were obtained using an AEI MS902 mass spectrometer operating at 70 eV .

The compounds $\mathrm{Hg}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ [23], $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{MMe}_{3}$, and $\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{MMe}_{3}\right)_{2}(\mathrm{M}=\mathrm{Si}, \mathrm{Sn})$ [$9,10,21,22]$ were prepared by published methods. ${ }^{1} \mathrm{H}$ NMR studies revealed that as prepared the silicon and tin compounds were the 5 - and 5,5 -isomers. Solvents were dried and freshly distilled before use.

Reactions of bis(cyclopentadienyl)mercury
(a) With dimethylacetylenedicarboxylate. Bis(cyclopentadienyl)mercury ($331 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}(284 \mathrm{mg}, 2 \mathrm{mmol})$ were refluxed in tetrahydrofuran (20 ml) for 140 h . The clear pale yellow solution so produced was evaporated under vacuūm and 50 ml of n -hexane was added. The solution was refrigerated for 48 h and the white solid obtained was filtered off and washed twice with a diethyl ether/tetrahydrofuran ($1: 1$) mixture. Recrystallisation from methylene chloride afforded compound I ($328 \mathrm{mg}, 53 \%$).

In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, infrared bands were observed at $3050 \mathrm{w}, 3000 \mathrm{w}, 2960 \mathrm{w}, 2910(\mathrm{sh})$, $2850 \mathrm{vw}, 1727 \mathrm{vs}, 1710 \mathrm{vs}, 1625 \mathrm{~m}, 1555 \mathrm{vw}, 1437 \mathrm{~s}, 1425$ (sh), $1315 \mathrm{~s}, 1255 \mathrm{vs}$, $1245 \mathrm{~s}, 1225 \mathrm{~m}, 1200 \mathrm{~s}, 1140 \mathrm{~m}, 1096 \mathrm{~s}, 1050 \mathrm{~m}, 953 \mathrm{w}, 920 \mathrm{vw}, 900 \mathrm{~s}, 870(\mathrm{sh})$, $845 \mathrm{vw}, 755 \mathrm{vs}, 710 \mathrm{vs} \mathrm{cm}^{-1}$.
(b) With hexafluorobut-2-yne. Bis(cyclopentadienyl)mercury ($662 \mathrm{mg}, 2 \mathrm{mmol}$) and 20 ml of tetrahydrofuran were placed in a Carius tube which was attached to a high vacuum system. Hexafluorobut-2-yne ($648 \mathrm{mg}, 4 \mathrm{mmol}$) was condensed
into the tube which was sealed and heated $\left(100^{\circ} \mathrm{C}, 40 \mathrm{~h}\right)$. The tube was opened, solvent removed in vacuo, and the white solid recrystallised from dichloromethane to give II ($1.18 \mathrm{~g}, 90 \%$). In other experiments it was found that the Diels-Alder addition of $\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}$ to $\mathrm{Hg}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ occurs at room temperature over a period of four days to give II in 86% yield.

The infrared spectrum of II in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed bands at 3010 w (br), 2890 w (br), $1680 \mathrm{~s}, 1559 \mathrm{vw}, 1340 \mathrm{vs}, 1295 \mathrm{vs}$, 1262 (sh), $1245 \mathrm{~s}, 1232 \mathrm{vs}, 1205 \mathrm{vs}, 1178 \mathrm{vs}$, $1135 \mathrm{vs}, 1090 \mathrm{~s}, 1001 \mathrm{~s}, 985 \mathrm{~m}, 934 \mathrm{w}, 892 \mathrm{w}, 839 \mathrm{w}, 811 \mathrm{w} \mathrm{cm}^{-1}$. The ${ }^{19}$ F NMR spectrum showed a sharp signal at 61.8 ppm .
(c) With octafluorobut-2-ene. As described in b, bis(cyclopentadienyl)mercury ($662 \mathrm{mg}, 2 \mathrm{mmol}$) and octafluorobut-2-ene ($800 \mathrm{mg}, 4 \mathrm{mmol}$) in tetrahydrofuran $(20 \mathrm{ml})$ were reacted in a sealed tube at $100^{\circ} \mathrm{C}$ for 40 h . The resultant brown solid was isolated from methylene chloride and gave compound III (780 mg , 53\%).

The infrared spectrum of III in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed bands at $3080 \mathrm{vw}, 3000 \mathrm{vw}$, $2980(\mathrm{sh}), 2870 \mathrm{vw}(\mathrm{br}), 1344 \mathrm{~m}, 1330 \mathrm{~s}, 1310 \mathrm{~s}, 1290 \mathrm{~m}, 1270(\mathrm{sh}), 1195 \mathrm{vs}, 1175(\mathrm{sh})$, $1114 \mathrm{w}, 1085 \mathrm{w}, 1070 \mathrm{w}, 1050 \mathrm{~m}, 1018 \mathrm{~s}, 990 \mathrm{~m}, 965 \mathrm{vw}, 948 \mathrm{~m}, 926 \mathrm{~m}, 882 \mathrm{vw}$, $815 \mathrm{~m}, 780 \mathrm{vw} \mathrm{cm}{ }^{-1}$. The ${ }^{19} \mathrm{~F}$ NMR spectrum showed peaks corresponding to the presence of threc isomers (sec earlicr) at 73.1 (CF_{3} exo), 74.0 (CF_{3} endo), 165.5 (F exo) and 162.9 (F endo) ppm for IIIa; at $71.0\left(\mathrm{CF}_{3}\right.$) and 158.4 (F) ppm for IIIb; and at $72.4\left(\mathrm{CF}_{3}\right)$ and 156.7 (F) ppm for IIIc.
(d) With hexafluoropropene. In a similar procedure to that followed in b above, bis(cyclopentadienyl)mercury ($662 \mathrm{mg}, 2 \mathrm{mmol}$) and hexafluoropropene ($600 \mathrm{mg}, 4 \mathrm{mmol}$) in tetrahydrofuran (20 ml) at $100^{\circ} \mathrm{C}$ for 40 h gave compound IV ($258 \mathrm{mg}, 28 \%$), crystallised from methylene chloride.

The infrared spectrum of IV in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed bands at $3070 \mathrm{vw}, 2960(\mathrm{sh})$, $2930 \mathrm{w}, 2860(\mathrm{sh}), 1715 \mathrm{w}(\mathrm{br}), 1605 \mathrm{w}$ (br), $1550 \mathrm{vw}(\mathrm{br}), 1464(\mathrm{sh}), 1440(\mathrm{sh})$, $1425 \mathrm{~s}, 1380(\mathrm{sh}), 1330 \mathrm{~s}, 1307 \mathrm{~s}, 1267 \mathrm{vs}, 1235 \mathrm{~s}, 1200 \mathrm{vs}, 1138 \mathrm{~m}, 1100 \mathrm{~m}, 1075 \mathrm{~m}$, $1065 \mathrm{~m}, 1048 \mathrm{~m}, 1005(\mathrm{sh}), 995 \mathrm{~m}, 970 \mathrm{~m}, 959 \mathrm{~m}, 930 \mathrm{~m}, 900 \mathrm{~s}, 860 \mathrm{w}, 810 \mathrm{~m}, 735 \mathrm{vs} \mathrm{cm}^{-}$ The ${ }^{19} \mathrm{~F}$ NMR spectrum showed peaks corresponding to the presence of two isomers (see earlier). The relative intensity of the bands indicated an isomer distribution of 40% for IVa and 60% for IVb. Assignments were as follows: Isomer IVa: $73.5\left(\mathrm{CF}_{3}\right), 107.3\left(\mathrm{~F}_{\mathrm{a}}\right), 103.1\left(\mathrm{~F}_{\mathrm{b}}\right)$ and $162.0\left(\mathrm{~F}_{\mathrm{c}}\right) \mathrm{ppm} ; J\left(\mathrm{~F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}\right) 235, J\left(\mathrm{~F}_{\mathrm{c}} \mathrm{F}_{\mathrm{b}}\right)$ $=J\left(\mathrm{~F}_{\mathrm{b}} \mathrm{CF}_{3}\right)=0 \mathrm{~Hz}$. Isomer IVb: $74.6\left(\mathrm{CF}_{3}\right), 105.9\left(\mathrm{~F}_{\mathrm{a}}\right), 103.7\left(\mathrm{~F}_{\mathrm{b}}\right)$ and $166.0\left(\mathrm{~F}_{\mathrm{c}}\right)$ $\mathrm{ppm} ; J\left(\mathrm{CF}_{3} \mathrm{~F}_{\mathrm{a}}\right)=0, J\left(\mathrm{CF}_{3} \mathrm{~F}_{\mathrm{b}}\right)=10, J\left(\mathrm{CF}_{3} \mathrm{~F}_{\mathrm{c}}\right)=4, J\left(\mathrm{~F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}\right)=232$ and $J\left(\mathrm{~F}_{\mathrm{a}} \mathrm{F}_{\mathrm{c}}\right)=$ 12.5 Hz .
(e) With 1,1-dicyuno-2,2-bis(trifluoromethyl)ethylene. Bis(cyclopentadienyl)mercury ($662 \mathrm{mg}, 2 \mathrm{mmol}$), 1,1-dicyano-2,2-bis(trifluoromethyl)ethylene (856 mg , 4 mmol) and tetrahydrofuran (50 ml) were placed in a flask and stirred at room temperature over night. A pale brown solid was filtered off and crystallised from pyridine to give V ($461 \mathrm{mg}, 30 \%$).

The infrared spectrum of compound V (Nujol mull) showed bands at 2385 vw , $2210 \mathrm{~s}, 2110 \mathrm{vs}, 1722 \mathrm{w}(\mathrm{br}), 1650 \mathrm{w}(\mathrm{br}), 1575 \mathrm{vw}(\mathrm{br}), 1310(\mathrm{sh}), 1275 \mathrm{~s}, 1260 \mathrm{~s}$, $1230 \mathrm{~s}, 1205 \mathrm{~s}, 1195 \mathrm{~s}, 1145 \mathrm{~m}, 1110 \mathrm{w}, 1055 \mathrm{w}, 1032 \mathrm{vw}, 992 \mathrm{w}, 980(\mathrm{sh}), 965 \mathrm{~m}$, 948(sh), $932 \mathrm{w}, 918$ (sh), $852 \mathrm{~m}, 845 \mathrm{w}, 838 \mathrm{~m}, 755 \mathrm{~m}, 745(\mathrm{sh}), 705 \mathrm{vw}, 650 \mathrm{vw}$, $600 \mathrm{vw}, 582 \mathrm{vw}$ (br), 565 vw (br), 555 vw (br), $508 \mathrm{w} \mathrm{cm}^{-1}$.
(f) With tetracyanoethylene. Reaction occurred immediately when a solution of bis(cyclopentadienyl)mercury ($662 \mathrm{mg}, 2 \mathrm{mmol}$) in tetrahydrofuran (10 ml)

TABLE 4
SPECTROSCOPIC PROPERTIES OF COMPOUNDS VIII-XIII

Compound VIII:	$3100 \mathrm{vm}, 3025 \mathrm{~m}, 2980 \mathrm{~s}, 2920 \mathrm{~m}, 2900 \mathrm{~m}, 1795 \mathrm{~m}, 1745 \mathrm{w}, 1735(\mathrm{sh}), 1695(\mathrm{sh}), 1690 \mathrm{~s}$, $1575 \mathrm{w}, 1570 \mathrm{w}, 1435 \mathrm{w}, 1423 \mathrm{w}, 1353 \mathrm{vs}, 1310 \mathrm{vs}, 1300$ (sh), $1265 \mathrm{vs}, 1255(\mathrm{sh}), 1240 \mathrm{~s}$, $1215 \mathrm{vs}, 1185 \mathrm{vs}(\mathrm{br}), 1140 \mathrm{vs}(\mathrm{br}), 1100 \mathrm{~s}, 1065 \mathrm{~m}, 1050 \mathrm{~m}, 1040(\mathrm{sh}), 1014 \mathrm{~s}, 994 \mathrm{~s}, 942 \mathrm{~s}$, 930s, $905 \mathrm{~s}, 874 \mathrm{vs}, 852 \mathrm{vs}, 822 \mathrm{~m}, 815$ (sh), 798w, 772s, 750 (sh), 735vs, 729 (sh), 719s, $704 \mathrm{w}, 645 \mathrm{w}, 627 \mathrm{~m}$.
Compound IX:	$3060 \mathrm{vm}, 2995(\mathrm{sh}), 2960 \mathrm{~s}, 2905 \mathrm{~m}, 2865 \mathrm{~m}, 1940 \mathrm{vw}(\mathrm{br}), 1880 \mathrm{vw}(\mathrm{br}), 1867(\mathrm{sh}), 1675 \mathrm{~s}$, $1655(\mathrm{sh}), 1553 \mathrm{~m}, 1543$ (sh), 1445 (sh), 1427 (sh), $1410 \mathrm{~m}, 1340 \mathrm{vs}, 1300 \mathrm{vs}, 1254 \mathrm{vs}$, $1230 \mathrm{~s}, 1208 \mathrm{vs}, 1170 \mathrm{vs}(\mathrm{br}), 1130 \mathrm{vs}(\mathrm{br}), 1035 \mathrm{~s}, 996 \mathrm{~m}, 958 \mathrm{~s}, 935 \mathrm{~s}, 890(\mathrm{sh}) .880 \mathrm{~s}$, $835 \mathrm{vs}(\mathrm{br}), 815 \mathrm{~s}, 792 \mathrm{~m}, 756 \mathrm{~s}, 743 \mathrm{~m}, 728 \mathrm{~m}, 716(\mathrm{sh}), 698 \mathrm{~m}, 658 \mathrm{w}, 630 \mathrm{~m}, 578 \mathrm{vw}$, 556w. 518 vw. 460 w .415 m .
Compound X:	$3027 \mathrm{~m}, 2984 \mathrm{~s}, 2910 \mathrm{~m}, 1799 \mathrm{~s}, 1750 \mathrm{~m}, 1700 \mathrm{~s}, 1695 \mathrm{~s}, 1582 \mathrm{w}, 1575$ (sh), 1428 m , $1358 \mathrm{vs}, 1315 \mathrm{vs}, 1307(\mathrm{sh}), 1220 \mathrm{vs}, 1185 \mathrm{vs}, 1140 \mathrm{vs}(\mathrm{br}), 1106 \mathrm{~s}, 1056 \mathrm{~m}, 1020 \mathrm{~s}, 1000 \mathrm{~s}$, $949 \mathrm{~s}, 934 \mathrm{~s}, 910 \mathrm{~s}, 874 \mathrm{vs}, 856 \mathrm{vs}, 825 \mathrm{~m}, 802 \mathrm{w}, 780 \mathrm{~s}, 740 \mathrm{vs}, 733(\mathrm{sh}), 724 \mathrm{~s}, 650 \mathrm{w}, 627 \mathrm{~m}$, -5503. 530s, 495 vw .
Compound XI:	3070 (sh), 3030s. $2960 \mathrm{~s}(\mathrm{br}), 2700 \mathrm{w}$. 2300w(br), 1967 (sh), $1687 \mathrm{~s}, 1665(\mathrm{sh}), 1550 \mathrm{~m}$, $1347 \mathrm{vs}, 1307 \mathrm{vs}(\mathrm{br}), 1245 \mathrm{vs}, 1200 \mathrm{vs}, 1180 \mathrm{vs}(\mathrm{bx}), 1138 \mathrm{vs}(\mathrm{br}), 1038 \mathrm{~m}, 1028 \mathrm{vs}, 1012 \mathrm{w}$, $998 \mathrm{~s}, 948 \mathrm{~m}, 930 \mathrm{~m}, 912 \mathrm{~m}, 890 \mathrm{w}, 865 \mathrm{~s}, 842 \mathrm{~s}, 820(\mathrm{sh}), 785 \mathrm{vs}(\mathrm{br}) .746 \mathrm{~s}, 736 \mathrm{~s}, 661 \mathrm{~m}$, $645 \mathrm{~m}, 630 \mathrm{vw}$, $545 \mathrm{vs}, 528 \mathrm{~s}, 473 \mathrm{~m}, 462 \mathrm{~m}$.
Compound XII:	$3090 \mathrm{w}, 3000 \mathrm{~m}, 2960 \mathrm{~s}, 2910(\mathrm{sh}), 1440(\mathrm{sh}), 1425 \mathrm{~m}(\mathrm{br}), 1345 \mathrm{vs}, 1329 \mathrm{vs}, 1315 \mathrm{vs}$, $1295 \mathrm{vs}, 1255 \mathrm{vs}, 1245 \mathrm{vs}, 1220 \mathrm{vs}(\mathrm{br}), 1190 \mathrm{vs}(\mathrm{br}), 1145(\mathrm{sh}), 1120 \mathrm{~m}, 1088 \mathrm{~s}, 1073 \mathrm{~s}$, $1055 \mathrm{~s}, 1020 \mathrm{~s}, 1005 \mathrm{~m}, 990 \mathrm{~s}, 970 \mathrm{~m}, 948 \mathrm{~s}, 939 \mathrm{~s}, 926 \mathrm{~s}, 885(\mathrm{sh}), 865 \mathrm{vs}, 845 \mathrm{vs}, 802 \mathrm{~m}$, $795 \mathrm{~m}, 768 \mathrm{~s}, 740 \mathrm{vs}, 730(\mathrm{sh}), 725 \mathrm{~s}, 698 \mathrm{w}, 670 \mathrm{~m}, 638 \mathrm{w}, 624 \mathrm{~m}, 600 \mathrm{ww}, 580 \mathrm{vw}, 550 \mathrm{w}$, $533 \mathrm{~m} .500 \mathrm{vw}, 490 \mathrm{vw}, 464 \mathrm{vw}, 440 \mathrm{w}$.
Compound XIII:	$3060 \mathrm{w}, 2960 \mathrm{vs}, 2908 \mathrm{~s}, 281 \overline{0}(\mathrm{sh}), 1940 \mathrm{w}(\mathrm{br}), 1880 \mathrm{w}(\mathrm{br}), 1575 \mathrm{~m}, 1425(\mathrm{sh}), 1410 \mathrm{~m}$, $1335 \mathrm{vs}, 1313 \mathrm{vs}, 1292 \mathrm{vs}, 1280 \mathrm{vs}, 1255 \mathrm{vs}(\mathrm{br}), 1230 \mathrm{vs}$ (br), $1190 \mathrm{vs}(\mathrm{br}), 1118 \mathrm{~m}, 1085 \mathrm{~s}$, $1060 \mathrm{~s}, 1025 \mathrm{vs}, 985 \mathrm{~s}, 950 \mathrm{~s}, 940 \mathrm{~s}, 910 \mathrm{~s}, 870 \mathrm{vs}(\mathrm{br}), 830 \mathrm{vs}(\mathrm{br}), 793 \mathrm{~s}, 758 \mathrm{vs}, 748 \mathrm{vs}$, 726vs, 698s. $678 \mathrm{~s}, 645(\mathrm{sh}) .625 \mathrm{~s}, 582 \mathrm{vw}, 560 \mathrm{~m} .535 \mathrm{~m}, 522(\mathrm{sh}), 490 \mathrm{~m}, 475(\mathrm{sh})$, $446 \mathrm{w}, 418 \mathrm{~m}$.
(b) ${ }^{19}$ F NMR Chemical shifts (ppm) and coupling constants (Hz).	
Compound VIII:	61.6
Compound IX:	60.0 and 62.1. $\mathrm{J}_{\left(\mathrm{CF}_{3}-\mathrm{CF}_{3} \text {) } 8.8\right.}$
Compound X:	61.8
Compound XI:	61.20 and $61.15 . \mathrm{J}_{\left(1 \mathrm{CF}_{3}-\mathrm{CF}_{3}\right) 2.4100}$
Compound XII:	Isomer Zilla, 73.4 (CF_{3} exo), 74.3 (CF_{3} endo), 166.4 (F exo) and 165.5 (F endo). J(CF3-CF3) 2.4, J(CF3 endo-F endo) 14.4 and $J\left(\mathrm{CF}_{3}\right.$ endo-F exo) 7.6. Isomer XIIb, 71.2 (CF_{3}) and 159.3 (F). Isomer XIIc, 72.6 (CF_{3}), peaks for F too weak and broad to be observed.
Compound XIII:	Isomer XIIIa, 73.4 (CF_{3} exo), 74.3 (CF_{3} endo), 166.9 (F exo) and 164.7 (F endo). $J\left(\mathrm{CF}_{3}-\mathrm{CF}_{3}\right) 2.4, J\left(\mathrm{CF}_{3}\right.$ endo-F endo) 14.2, J(CF3 endo-F exo) 7.6, J(CF3 exo-F exo) 8.1 and $J\left(\mathrm{CF}_{3}\right.$ exu-F endo) 13.0. Isomer XIIIb, 72.3(CF_{3}). Isomer XIIIc, 72.6(CF3). For isomers XIIIb and XIIIc concentrations were too low for high field fluorine signals to be observed (see text).

was added to a solution of tetracyanoethylene ($512 \mathrm{mg}, 4 \mathrm{mmol}$) in the same solvent (10 ml). The yellow solid which precipitated was filtered off and washed with diethyl ether/tetrahydrofuran ($1: 1$) to give compound VI ($1.06 \mathrm{~g}, 90 \%$).

The infrared spectrum of VI (Nujol mull) showed bands at 2360vw, 2265(sh), $2210 \mathrm{~m}(\mathrm{br}), 2130 \mathrm{w}(\mathrm{br}), 1575 \mathrm{w}(\mathrm{br}), 1332 \mathrm{~s}, 1310 \mathrm{~m}, 1275(\mathrm{sh}), 1265 \mathrm{~m}, 1255(\mathrm{sh})$; $1208 \mathrm{w}, 1170 \mathrm{~m}, 1156 \mathrm{~m}, 1100 \mathrm{vw}, 1085 \mathrm{vw}, 1035 \mathrm{vw}(\mathrm{br}), 975 \mathrm{w}(\mathrm{br}), 935 \mathrm{w}, 915 \mathrm{vw}$, 895 vw (br), $868 \mathrm{~s}, 790 \mathrm{~m}, 780 \mathrm{~s} \mathrm{~cm}^{-1}$.
(g) With 4-phenyl-1,2,4-triazoline-3,5-dione. Bis(cyclopentadienyl)mercury
($331 \mathrm{mg}, 1 \mathrm{mmol}$) and 4-phenyl-1,2,4-triazoline-3,5-dione ($350 \mathrm{mg}, 2 \mathrm{mmol}$) in tetrahydrofuran (50 ml) were stirred at room temperature for 15 h . The dark red solution was evaporated in vacuo, and the residue was treated with petroleum ether ($40-60^{\circ} \mathrm{C}$) from which dark red crystals of VII ($450 \mathrm{mg}, 66 \%$) were recovered.

The infrared spectrum of VII $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution) showed bands at $2920 \mathrm{w}(\mathrm{br})$, $2345 \mathrm{vw}, 1725 \mathrm{~s}, 1700(\mathrm{sh}), 1603 \mathrm{w}, 1507 \mathrm{~m}, 1495(\mathrm{sh}), 1430(\mathrm{sh}), 1415 \mathrm{~m}, 1385(\mathrm{sh})$, $1370(\mathrm{sh}), 1300 \mathrm{vw}(\mathrm{br}), 1263 \mathrm{vw}(\mathrm{br}), 1235 \mathrm{~m}, 1165 \mathrm{~m}, 1068 \mathrm{vs}, 1030 \mathrm{vs}, 970 \mathrm{w}$, $948 \mathrm{vw}, 920 \mathrm{sh}, 910 \mathrm{w}, 840 \mathrm{vw}(\mathrm{br}), 825 \mathrm{vw} \mathrm{cm}^{-1}$.

General procedure for the synthesis of the organo-silicon and -tin compounds VIII-XIII.

In a representative experiment, 5-trimethylsilylcyclopentadiene (1.38 g , 10 mmol) was placed in a Carius tube attached to a high vacuum system. Hexa-fluoro-but-2-yne ($1.78 \mathrm{~g}, 11 \mathrm{mmol}$) was condensed into the tube which was sealed, and heated at $100^{\circ} \mathrm{C}$ for 40 h . After cooling the tube was opened and the liquid removed, and distilled under reduced pressure, giving compound VIII ($1.36 \mathrm{~g}, 45 \%$).

Using a similar technique the other compounds were prepared from reactants as follows:
Compound IX. ($3.05 \mathrm{~g}, 82 \%$) from $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}(1.78 \mathrm{~g}, 11 \mathrm{mmol})$ and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2}-$ $\mathrm{C}_{5} \mathrm{H}_{4}(2.11 \mathrm{~g}, 10 \mathrm{mmol})$ at room temperature for 60 h .
Compound $\mathrm{X} .\left(1.01 \mathrm{~g}, 52 \%\right.$) from $\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}(0.92 \mathrm{~g}, 6 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SnC}_{5} \mathrm{H}_{5}$ ($1.59 \mathrm{~g}, 5 \mathrm{mmol}$) at room temperature for 120 h .
Compound XI. ($1.46 \mathrm{~g}, 53 \%$) from $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}(0.92 \mathrm{~g}, 6 \mathrm{mmol})$ and $\left(\mathrm{Me} \mathrm{B}_{3} \mathrm{Sn}\right)_{2^{-}}$ $\mathrm{C}_{5} \mathrm{H}_{4}(1.96 \mathrm{~g}, 5 \mathrm{mmol})$ at room temperature for 110 h .
Compound XII. ($2.37 \mathrm{~g}, 70 \%$) from $\mathrm{CF}_{3} \mathrm{CF}=\mathrm{CFCF}_{3}$ ($2.2 \mathrm{~g}, 11 \mathrm{mmol}$) and $\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{5}(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ at $100^{\circ} \mathrm{C}$ for 40 h . Compound XIII. ($1.44 \mathrm{~g}, 70 \%$) from $\mathrm{CF}_{3} \mathrm{CF}=\mathrm{CFCF}_{3}(1.2 \mathrm{~g}, 6 \mathrm{mmol})$ and $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4}(1.05 \mathrm{~g}, 5 \mathrm{mmol})$ at $100^{\circ} \mathrm{C}$ for 12 h .

The spectroscopic properties of compounds VIII-XIII are given in Table 4.

Acknowledgement

A.R.L.B. thanks the International Atomic Energy Agency (Vienna) for a Fellowship (1974/75).

References

[^4]12 D.R.A. Pery, Fluorine Chem. Revs,, i (1967) 253.
13 B.E. Smart, J. Org. Chem., 38 (1973) 2027, 2035.
14 A.R.L. Bursics, E. Bursics-Szekeres, M. Murray and F.G.A. Stone, J. Fluorine Chem.. in press.
15 E. Lippmaa, T. Pehk, J. Paasivirta, N. Belikova and A. Plate, Org. Magn, Reson., 2 (1970) 581 :
16 J Browning and M. Murray, unpublished results.
17 A. Davison and P.E. Rakita, Inorg Chern., 9 (1970) 289.
18 R.N. Haszeldine, J. Chem. Soc., (1951)-588.
19 J.R. Johnson and W.L. McEven, J. Amer. Chem. Soc., 48 (1926) 469.
20 I.R. Golding and A.M. Sladkov, Bull. Acad. Sci. USSR Chem. Sci., 21 (1972) 481.
21 K. Jones and M.F. Lappert: J. Chem. Soc., (1965) 1944.
22 K. Jones and M.F. Lappert, J. Organometal. Chem., 3 (1965) 295.
23 S. Lenzer, Aust. J. Chem., 22 (1969) 1303.

[^0]: * Institute of Isotopes of the Hungarian Academy of Sciences, 1525, Budapest, P.O. Box 77 (Hungary).

[^1]:

[^2]: ${ }^{a}$ Calculated in brackets. ${ }^{b}$ Molecular weight from mass spectra. ${ }^{c}$ For the position of protons of bicyclo[2.2 .1]heptene ring see footnote d of Table 1. Coupling. constants (Hz) in brackets. ${ }^{d}$ Mixture of isomers (see text).

[^3]: Where $C(1)$ and $C(4)$ aro not equivalent, there is ambiguity as to which signal should be assigned to which carbon. Only in the case of XI was a tentatlve assignment possible on account of satellites observed from both tin nuclei for $\mathrm{C}(4){ }^{6}$ For IX, XI and XIII assignment of these two signals was possibie due to the greater intensity of the C(6) signal (N.O,E.). For XVII and XII the assignment is ambiguous. ${ }^{c}$ Signals for these carbon atoms were not measurable due to low intenslty and multiplicity
 could possibly be reversed.

[^4]: 1 G. Wilkinson and T.S. Piper, J. Inorg. Nucl. Chem., 2 (1956) 32.
 2 J. Mink, L. Bursics and G. Vêgh, J. Organometal. Chem., 34 (1972) C4.
 3 K.C. Frisch, J. Amer. Chem. Soc., 75 (1953) 6050.
 4 C.S. Kraihanzel and M.L. Losee, J. Amer. Chem. Soc., 90 (1968) 4701.
 5 A.J. Ashe, J. Amer. Chem. Soc., 92 (1970) 1233.
 6 A. Davison and P.E. Rakita, J. Organometal. Chem. 23 (1970) 407.
 7 G.I. Avramenko, N.M. Sergeyev and Yu. A. Ustynyuk, J. Organometal. Chem., 37 (1972) 89.
 8 Yu. A. Ustynyuk, A.V. Kisin and A.A. Zenkin, J. Organometal. Chem., 37 (1972) 101.
 9 E.W. Abel and M.O. Dunster, J: Organometal. Chem., 33 (1971) 161.
 10 M.O. Dunster, Ph.D. Thesis, Bristol, 1972.
 11 Yu. A. Ustynyuk, Yu. A. Luzikov, V.I. Mstislavsky, A.A. Azizov and I.M. Pribytkova, J. Organometal. Chem. 96 (1975) 335.

